Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.310
Filtrar
Más filtros

Medicinas Complementárias
Intervalo de año de publicación
1.
BMC Complement Med Ther ; 24(1): 153, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38581023

RESUMEN

BACKGROUND: Vortioxetine (VORTX) is a potent and selective type of selective serotonin reuptake inhibitor (SSRI) that is mainly prescribed for treating major depression along with mood disorders as the first drug of choice. Limited previous findings have indicated evidence of liver injury and hepatotoxicity associated with daily VORTX treatment. Rutin (RUT), which is known for its antioxidant properties, has demonstrated several beneficial health actions, including hepatoprotection. Therefore the current study aimed to evaluate and assess the ameliorative effect of RUT against the hepatotoxic actions of daily low and high-dose VORTX administration. METHODS: The experimental design included six groups of rats, each divided equally. Control, rats exposed to RUT (25 mg/kg), rats exposed to VORTX (28 mg/kg), rats exposed to VORTX (28 mg/kg) + RUT (25 mg/kg), rats exposed to VORTX (80 mg/kg), and rats exposed to VORTX (80 mg/kg) + RUT (25 mg/kg). After 30 days from the daily exposure period, assessments were conducted for serum liver enzyme activities, hepatotoxicity biomarkers, liver antioxidant endogenous enzymes, DNA fragmentation, and histopathological studies of liver tissue. RESULTS: Interestingly, the risk of liver damage and hepatotoxicity related to VORTX was attenuated by the daily co-administration of RUT. Significant improvements were observed among all detected liver functions, oxidative stress, and inflammatory biomarkers including aspartate aminotransferase (AST), alanine transaminase (ALT), lactate dehydrogenase (LDH), albumin, malondialdehyde (MDA), superoxide dismutase (SOD), glutathione (GSH), glutathione S-transferase (GST), total protein, acid phosphatase, N-Acetyl-/ß-glucosaminidase (ß-NAG), ß-Galactosidase (ß-Gal), alpha-fetoprotein (AFP), caspase 3, and cytochrom-C along with histopathological studies, compared to the control and sole RUT group. CONCLUSION: Thus, RUT can be considered a potential and effective complementary therapy in preventing hepatotoxicity and liver injury induced by the daily or prolonged administration of VORTX.


Asunto(s)
Antioxidantes , Enfermedad Hepática Inducida por Sustancias y Drogas , Ratas , Animales , Antioxidantes/farmacología , Rutina/farmacología , Vortioxetina , Inflamación/tratamiento farmacológico , Glutatión/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Biomarcadores
2.
Asian Pac J Cancer Prev ; 25(3): 1065-1075, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38546089

RESUMEN

BACKGROUND: Cervical cancer is a prevalent and deadly malignancy in females, with chemotherapy often proving ineffective due to significant side effects and the development of chemo-resistance. This study investigates the medicinal potential of Clerodendrum infortunatum linn. , a genus with approximately 500 species in the Lamiaceae family. Limited research exists on the species of Clerodendrum infortunatum and its various solvent extracts. OBJECTIVE: The study aims to assess the anti-cancer properties of different solvent extracts from this plant on human cervical cancer cells. METHODS: The study examines the plant's phytochemical components and their potential to inhibit cancer growth. Aerial parts of the plant were extracted using the Soxhlet method, and the presence of Rutin, Quercetin, and Gallic Acid in specific solvent extracts was validated through High-Performance Thin Layer Chromatography (HPTLC). In vitro assays, including MTT, Apoptosis, Cell Cycle analysis, Intracellular Reactive Oxygen Species assessment, and Gene expression PCR, were conducted to investigate the plant's anti-cancer properties further. RESULTS: The outcomes of the phytochemical assessment indicated that Rutin was predominantly present in the water extract, with quercetin being more concentrated in the decoction, and the hydro-alcoholic extract showing elevated levels of gallic acid. Notably, the decoction extract demonstrated the highest cytotoxic activity, primarily through early apoptosis and arrests in the S-phase and G2M phases. Clerodendrum infortunatum exhibited a reduction in Intracellular Reactive Oxygen Species. The gene expression analysis disclosed an impact on the BCL-2 gene. CONCLUSION: Notably, Clerodendrum infortunatum exhibited the ability to initiate early apoptosis, halt the cell cycle at the S and G2M phases, and diminish levels of reactive oxygen species significantly. The gene expression analysis revealed an influence on the BCL-2 gene. To sum up, this research underscores the encouraging cytotoxic and antioxidant attributes of Clerodendrum infortunatum, implying its potential for cervical cancer treatment.


Asunto(s)
Clerodendrum , Neoplasias del Cuello Uterino , Humanos , Femenino , Extractos Vegetales/farmacología , Extractos Vegetales/química , Clerodendrum/química , Neoplasias del Cuello Uterino/tratamiento farmacológico , Solventes , Quercetina/farmacología , Especies Reactivas de Oxígeno , Fitoquímicos , Ácido Gálico , Rutina
3.
Med J Malaysia ; 79(Suppl 1): 34-39, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38555883

RESUMEN

INTRODUCTION: Parkia speciosa Hassk., commonly known as bitter bean or twisted cluster bean, is a tropical leguminous plant species native to Southeast Asia. The plant's edible pods have been traditionally used in various cuisines, particularly in Malaysian, Thai, and Indonesian cooking. Apart from being used as a food ingredient, the pods of P. speciosa also have a range of potential applications in other fields, including medicine, agriculture, and industry. The pods are said to have several phytochemicals that hold great therapeutic values such as reducing inflammation, improving digestion, and lowering blood sugar levels. However, there is limited information on the specific phytochemical contents of the pods in the literature. Thus, the aim of this study is to quantify the total phenolic and flavonoid compounds and to determine the concentrations of four selected phytochemical compounds in the P. speciosa pod extract (PSPE). MATERIALS AND METHODS: Quantification of the total phenolic (TPC) and flavonoid contents (TFC) in PSPE were done via colourimetric methods; and the determination of the concentrations of four specific phytochemicals (gallic acid, caffeic acid, rutin, and quercetin) were done via High- Performance Liquid Chromatography (HPLC). RESULTS: Colourimetric determination of PSPE showed TPC and TFC values of 84.53±9.40 mg GAE/g and 11.96±4.51 mg QE/g, respectively. Additional analysis of the phytochemicals using HPLC revealed that there were 6.45±3.36 g/kg, 5.91±1.07 g/kg, 0.39±0.84 g/kg, and 0.19±0.47 g/kg of caffeic acid, gallic acid, rutin, and quercetin, respectively. CONCLUSION: The findings show that PSPE contains substantial amounts of caffeic acid, gallic acid, rutin, and quercetin, which may indicate its potential as antibacterial, anti-inflammatory, anti-lipid, and antiviral medicines.


Asunto(s)
Antioxidantes , Quercetina , Humanos , Quercetina/análisis , Antioxidantes/análisis , Antioxidantes/química , Cromatografía Líquida de Alta Presión/métodos , Flavonoides/análisis , Ácido Gálico/análisis , Fenoles/análisis , Fenoles/química , Rutina/análisis , Fitoquímicos/análisis , Extractos Vegetales
4.
Plant Physiol Biochem ; 208: 108503, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38484679

RESUMEN

Rutin is a significant flavonoid with strong antioxidant property and various therapeutic effects. It plays a crucial role in disease prevention and human health maintenance, especially in anti-inflammatory, antidiabetic, hepatoprotective and cardiovascular effects. While many plants can synthesize and accumulate rutin, tartary buckwheat is the only food crop possessing high levels of rutin. At present, the rutin content (RC) is regarded as the key index for evaluating the nutritional quality of tartary buckwheat. Consequently, rutin has become the focus for tartary buckwheat breeders and has made considerable progress. Here, we summarize research on the rutin in tartary buckwheat in the past two decades, including its accumulation, biosynthesis and breakdown pathways, and regulatory mechanisms. Furthermore, we propose several strategies to increase the RC in tartary buckwheat seeds based on current knowledge. This review aims to provide valuable references for elevating the quality of tartary buckwheat in the future.


Asunto(s)
Fagopyrum , Rutina , Humanos , Rutina/metabolismo , Fagopyrum/metabolismo , Biofortificación , Flavonoides/metabolismo , Redes y Vías Metabólicas
5.
Chem Biol Interact ; 394: 110972, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38555047

RESUMEN

Systemic lupus erythematosus (SLE) is an autoimmune disorder characterized by complex clinical symptoms and multi-organ damage. One of the most prevalent complications of SLE is lupus nephritis (LN). Rutin, a natural flavonoid compound found in various plants used in traditional Chinese medicine, has shown promising anti-inflammatory, antioxidant, and renal protective effects. In our study, we treated MRL/lpr mice, a model known for spontaneously developing LN, with Rutin. Our findings reveal that Rutin markedly reduced serum cytokine and autoantibody levels and decreased inflammatory cell infiltration in renal tissues, thereby ameliorating kidney pathology. In vitro experiments indicated that Rutin's therapeutic effect on LN is linked to its significant reduction of oxidative stress in T cells. Further investigations suggest that Rutin enhances oxidative stress management through the modulation of Peroxisome proliferator-activated receptor gamma (PPARγ). We observed that Rutin modulates PPARγ activity, leading to reduced transcriptional activity of NF-κB and STAT3, which in turn inhibits the secretion of inflammatory cytokines such as IL-6, TNF-α, and IL-17. In summary, Rutin can exert an antioxidant effect by regulating PPARγ and shows therapeutic action against LN.


Asunto(s)
Nefritis Lúpica , Ratones Endogámicos MRL lpr , FN-kappa B , Estrés Oxidativo , PPAR gamma , Rutina , Linfocitos T , Rutina/farmacología , Rutina/uso terapéutico , Animales , PPAR gamma/metabolismo , Estrés Oxidativo/efectos de los fármacos , Nefritis Lúpica/tratamiento farmacológico , Nefritis Lúpica/metabolismo , Nefritis Lúpica/patología , Ratones , Linfocitos T/efectos de los fármacos , Linfocitos T/metabolismo , FN-kappa B/metabolismo , Femenino , Factor de Transcripción STAT3/metabolismo , Citocinas/metabolismo , Riñón/efectos de los fármacos , Riñón/patología , Riñón/metabolismo , Antioxidantes/farmacología
6.
Molecules ; 29(5)2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38474563

RESUMEN

Aeginetia indica L., a parasitic root in the Orobanchaceae family, is used as a food colorant in traditional Thai desserts. However, scant information is available on its food applications as well as medicinal properties, while overharvesting by the local people has severely depleted wild plant populations. This research, thus, aimed to extract optimized total phenolic content (TPC) in varying extraction conditions using response surface methodology (RSM) and the Box-Behnken design (BBD). Results indicated that an extraction temperature of 90 °C, 80% (v/v) aqueous ethanol, and 0.5% (w/v) solid-to-liquid ratio yielded the highest TPC at 129.39 mg gallic acid equivalent (GAE)/g dry weight (DW). Liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) identified the predominant phenolics as apigenin (109.06 mg/100 g extract) and luteolin (35.32 mg/100 g extract) with trace amounts of naringenin and rutin. Under the optimal extraction condition, the plant extract exhibited antioxidant activities of 5620.58 and 641.52 µmol Trolox equivalent (TE)/g DW determined by oxygen radical absorbance capacity (ORAC) and ferric ion reducing antioxidant power (FRAP) assay, while the scavenging capacity of total radicals at 50% (SC50) was determined to be 135.50 µg/mL using 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay. The plant extract also exhibited inhibitory activities against the key enzymes relevant to type II diabetes, obesity, and Alzheimer's disease, suggesting the potential for medicinal applications.


Asunto(s)
Antioxidantes , Diabetes Mellitus Tipo 2 , Humanos , Antioxidantes/química , Espectrometría de Masas en Tándem , Extractos Vegetales/química , Rutina
7.
Molecules ; 29(5)2024 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-38474645

RESUMEN

Fruit peels might be a valuable source of active ingredients for cosmetics, leading to more sustainable usage of plant by-products. The aim of the study was to evaluate the phytochemical content and selected biological properties of hydroglycolic extracts from peels and pulps of Annona cherimola, Diospyros kaki, Cydonia oblonga, and Fortunella margarita as potential cosmetic ingredients. Peel and pulp extracts were compared for their antiradical activity (using DPPH and ABTS radical scavenging assays), skin-lightening potential (tyrosinase inhibitory assay), sun protection factor (SPF), and cytotoxicity toward human fibroblast, keratinocyte, and melanoma cell lines. The total content of polyphenols and/or flavonoids was significantly higher in peel than in pulp extracts, and the composition of particular active compounds was also markedly different. The HPLC-MS fingerprinting revealed the presence of catechin, epicatechin and rutoside in the peel of D. kaki, whereas kaempferol glucoside and procyanidin A were present only in the pulp. In A. cherimola, catechin, epicatechin and rutoside were identified only in the peel of the fruit, whereas procyanidins were traced only in the pulp extracts. Quercetin and luteolinidin were found to be characteristic compounds of F. margarita peel extract. Naringenin and hesperidin were found only in the pulp of F. margarita. The most significant compositional variety between the peel and pulp extracts was observed for C. oblonga: Peel extracts contained a higher number of active components (e.g., vicenin-2, kaempferol rutinoside, or kaempferol galactoside) than pulp extract. The radical scavenging potential of peel extracts was higher than of the pulp extracts. D. kaki and F. margarita peel and pulp extracts inhibited mushroom and murine tyrosinases at comparable levels. The C. oblonga pulp extract was a more potent mushroom tyrosinase inhibitor than the peel extract. Peel extract of A. cherimola inhibited mushroom tyrosinase but activated the murine enzyme. F. margarita pulp and peel extracts showed the highest in vitro SPF. A. cherimola, D. kaki, and F. margarita extracts were not cytotoxic for fibroblasts and keratinocytes up to a concentration of 2% (v/v) and the peel extracts were cytotoxic for A375 melanoma cells. To summarize, peel extracts from all analyzed fruit showed comparable or better cosmetic-related properties than pulp extracts and might be considered multifunctional active ingredients of skin lightening, anti-aging, and protective cosmetics.


Asunto(s)
Annona , Catequina , Diospyros , Melanoma , Rosaceae , Rutaceae , Ratones , Animales , Humanos , Catequina/análisis , Antioxidantes/farmacología , Diospyros/química , Quempferoles/análisis , Monofenol Monooxigenasa , Pulgar , Frutas/química , Rosaceae/química , Rutina/análisis , Fitoquímicos/análisis , Extractos Vegetales/química
8.
Phytomedicine ; 126: 155437, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38394735

RESUMEN

BACKGROUND: In diabetic liver injury, nonalcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease. Rutin is a bioflavonoid produced by the hydrolysis of glucosidases to quercetin. Its biological activities include lowering blood glucose, regulating insulin secretion, regulating dyslipidemia, and exerting anti-inflammatory effects have been demonstrated. However, its effect on diabetic NAFLD is rarely reported. PURPOSE: Our study aimed to investigate the protective effects of Rutin on diabetic NAFLD and potential pharmacological mechanism. METHODS: We used db/db mice as the animal model to investigate diabetic NAFLD. Oleic acid-treated (OA) HeLa cells were examined whether Rutin had the ability to ameliorate lipid accumulation. HepG2 cells treated with 30 mM/l d-glucose and palmitic acid (PA) were used as diabetic NAFLD in vitro models. Total cholesterol (TC) and Triglycerides (TG) levels were determined. Oil red O staining and BODIPY 493/503 were used to detect lipid deposition within cells. The indicators of inflammation and oxidative stress were detected. The mechanism of Rutin in diabetic liver injury with NAFLD was analyzed using RNA-sequence and 16S rRNA, and the expression of fat-synthesizing proteins in the 5' adenosine monophosphate-activated protein kinase (AMPK) pathway was investigated. Compound C inhibitors were used to further verify the relationship between AMPK and Rutin in diabetic NAFLD. RESULTS: Rutin ameliorated lipid accumulation in OA-treated HeLa. In in vitro and in vivo models of diabetic NAFLD, Rutin alleviated lipid accumulation, inflammation, and oxidative stress. 16S analysis showed that Rutin could reduce gut microbiota dysregulation, such as the ratio of Firmicutes to Bacteroidetes. RNA-seq showed that the significantly differentially genes were mainly related to liver lipid metabolism. And the ameliorating effect of Rutin on diabetic NAFLD was through AMPK/SREBP1 pathway and the related lipid synthesis proteins was involved in this process. CONCLUSION: Rutin ameliorated diabetic NAFLD by activating the AMPK pathway and Rutin might be a potential new drug ingredient for diabetic NAFLD.


Asunto(s)
Diabetes Mellitus , Enfermedad del Hígado Graso no Alcohólico , Humanos , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Metabolismo de los Lípidos , Proteínas Quinasas Activadas por AMP/metabolismo , Rutina/farmacología , Células HeLa , ARN Ribosómico 16S , Hígado , Inflamación/metabolismo , Dieta Alta en Grasa/efectos adversos , Lípidos , Ratones Endogámicos C57BL
9.
Food Funct ; 15(6): 3076-3086, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38415328

RESUMEN

Postprandial hyperglycemia is an independent risk factor for cardiovascular diseases, and the impact of tea polyphenols (TP) and rutin, representative phenolic compounds with different water solubilities, on the postprandial glycemic response to cooked normal corn starch (CCS) was investigated. Comparatively, TP (DPPH50 = 0.12 mmol L-1) are more potent than rutin (DPPH50 = 0.50 mmol L-1) in scavenging the free radicals of DPPH, but both TP and rutin inhibited the activity of porcine pancreatic α-amylase (PPA), the major enzyme in starch digestion, with an IC50 of 4.09 mmol L-1 and 2.71 mmol L-1, respectively. However, an in vivo study showed that a significant reduction in postprandial blood glucose was only observed in the presence of rutin, and TP had no effect on the glycemic response to CCS. To find out the underlying mechanism, fluorescence spectroscopy and molecular docking were carried out and they showed that, compared to TP, rutin bound to the active site of PPA with higher affinity and a lower free energy (ΔG) driven by hydrogen bonds and π-stacking, and rutin also greatly increased the viscosity of starch. Collectively, water-soluble TP have a higher antioxidant property and a lower potency to inhibit PPA compared to water-insoluble rutin, and the weaker interaction between TP and PPA, and starch as well might synergistically contribute to TP's ineffectiveness in lowering the postprandial glycemic response, and water solubility linking the molecular structures and functions of phenolic compounds might be the fundamental basis for the observed difference in their biological functions, and water solubility can also be used to enrich specific phenolic compounds for desired functions.


Asunto(s)
Polifenoles , Zea mays , Porcinos , Animales , Polifenoles/farmacología , Solubilidad , Simulación del Acoplamiento Molecular , Fenoles , Rutina/farmacología , Almidón ,
10.
Plant Physiol Biochem ; 207: 108402, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38310726

RESUMEN

Tartary buckwheat (Fagopyrum tataricum) is frequently employed as a resource to develop health foods, owing to its abundant flavonoids such as rutin. However, the consumption of Tartary buckwheat (TB) is limited in food products due to the strong bitterness induced by the hydrolysis of rutin into quercetin. This transformation is facilitated by the degrading enzyme (RDE). While multiple RDE isoenzymes exist in TB, the superior coding gene of FtRDEs has not been fully explored, which hinders the breeding of TB varieties with minimal bitterness. Here, we found that FtRDE2 is the most abundant enzyme in RDE crude extracts, and its corresponding gene is specifically expressed in TB seeds. Results showed that FtRDE2 has strong rutin hydrolysis activity. Overexpression of FtRDE2 not only significantly promoted rutin hydrolysis and quercetin accumulation but also dramatically upregulated genes involved in the early phase of flavonoid synthesis (FtPAL1、FtC4H1、Ft4CL1, FtCHI1) and anthocyanin metabolism (FtDFR1). These findings elucidate the role of FtRDE2, emphasizing it as an endogenous factor contributing to the bitterness in TB and its involvement in the metabolic regulatory network. Moreover, correlation analysis revealed a positive relationship between the catalytic activity of RDE extracts and the expression level of FtRDE2 during seed germination. In summary, our results suggest that FtRDE2 can serve as a promising candidate for the molecular breeding of a TB variety with minimal bitterness.


Asunto(s)
Fagopyrum , Quercetina , Quercetina/metabolismo , Fagopyrum/genética , Fagopyrum/metabolismo , Fitomejoramiento , Rutina/metabolismo , Semillas/metabolismo
11.
Molecules ; 29(4)2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38398569

RESUMEN

In this study, Asparagus stipularis was characterized concerning its phytochemical composition, antioxidant potential, cytotoxicity, and pancreatic lipase inhibitory activities. Twenty-seven compounds were identified and quantified by HPLC-DAD-MS in the leaf, stem, pericarp, and rhizome of ethanolic extracts. Seven steroidal saponins were detected, and the highest content was quantified in rhizome and pericap. A. stipularis also contained significant amounts of flavonoids in the aerial part. Isorhamnetin tetra-glycoside, quercetin-3-glucosyl-rutinoside, and rutin were the main flavonoid derivatives in leaf, stem, and pericarp extracts, respectively. In addition, eleven phenolic acids were also detected; among them, caffeic acid, protocatechuic acid, p-hydroxybenzoic acid, and ferulic acid were the predominant phenolics, with these having the highest amounts quantified in the rhizome extracts. All the tested extracts possessed antioxidant capacities, with pericarp and rhizome extracts exhibiting the highest activity in DPPH, ABTS, and FRAP assays. The extracts from pericarp and rhizome were revealed to also be the strongest inhibitors of pancreatic lipase. The rhizome extracts exhibited potent cytotoxic activity against HCT-116 and HepG2 with IC50 values of 30 and 54 µg/mL after 48 h of treatment. The present study demonstrated that A. stipularis can be used as a new source of natural antioxidants and potential anticancer and antiobesity compounds.


Asunto(s)
Antioxidantes , Extractos Vegetales , Antioxidantes/farmacología , Antioxidantes/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Flavonoides/química , Rutina , Fitoquímicos/farmacología , Lipasa
12.
Zhongguo Zhong Yao Za Zhi ; 49(1): 100-109, 2024 Jan.
Artículo en Chino | MEDLINE | ID: mdl-38403343

RESUMEN

Hawthorn has the efficacy of eliminating turbidity and lowering the blood lipid level, and it is used for treating hyperlipidemia in clinic. However, the bioactive components of hawthorn are still unclear. In this study, the spectrum-effect relationship was employed to screen the bioactive components of hawthorn in the treatment of hyperlipidemia, and then the bioactive components screened out were verified in vivo. Furthermore, the quality control method for hawthorn was developed based on liquid chromatography-mass spectrometry(LC-MS). The hyperlipidemia model of rats was built, and different polar fractions of hawthorn extracts and their combinations were administrated by gavage. The effects of different hawthorn extract fractions on the total cholesterol(TC), triglycerides(TG), and low-density lipoprotein-cholesterol(LDL-C) in the serum of model rats were studied. The orthogonal projections to latent structures(OPLS) algorithm was used to establish the spectrum-effect relationship model between the 24 chemical components of hawthorn and the pharmacodynamic indexes, and the bioactive components were screened out and verified in vivo. Finally, 10 chemical components of hawthorn, including citric acid and quinic acid, were selected to establish the method for evaluating hawthorn quality based on LC-MS. The results showed that different polar fractions of hawthorn extracts and their combinations regulated the TG, TC, and LDL-C levels in the serum of the model rats. The bioactive components of hawthorn screened by the OPLS model were vitexin-4″-O-glucoside, vitexin-2″-O-rhamnoside, rutin, citric acid, malic acid, and quinic acid. The 10 chemical components of hawthorn, i.e., citric acid, quinic acid, rutin, gallic acid, vitexin-4″-O-glucoside, vitexin-2″-O-rhamnoside, malic acid, vanillic acid, neochlorogenic acid, and fumaric acid were determined, with the average content of 38, 11, 0.018, 0.009 5, 0.037, 0.017, 8.1, 0.009 5, 0.073, and 0.98 mg·g~(-1), respectively. This study provided a scientific basis for elucidating the material basis of hawthorn in treating hyperlipidemia and developed a content determination method for evaluating the quality of hawthorn.


Asunto(s)
Crataegus , Hiperlipidemias , Ratas , Animales , Crataegus/química , LDL-Colesterol , Ácido Quínico , Extractos Vegetales/farmacología , Extractos Vegetales/química , Rutina/química , Lípidos , Hiperlipidemias/tratamiento farmacológico , Control de Calidad , Glucósidos , Ácido Cítrico
13.
Anal Methods ; 16(10): 1480-1488, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38372557

RESUMEN

Rutin (RUT), a natural flavonoid with various beneficial pharmacological actions such as cardioprotective, antioxidant, anti-inflammatory, neuroprotective, etc., is found in the content of many plants that are consumed daily. Due to the healthful effects, RUT is also included in the composition of various herbal supplement samples. Therefore, it is highly important to develop a sensor with high selectivity and sensitivity to determine RUT in complex samples. In this study, it was aimed to take advantage of the cheap, easy, and sensitive nature of electrochemistry and, in addition, to improve the selectivity. For this purpose, the functional monomer selected in the fabricated molecularly imprinted polymer (MIP) was N-methacryloyl-L-aspartic acid (MA-Asp) while photopolymerization (PP) was applied as the polymerization route. After completing critical optimization steps, the developed sensor (MA-Asp@RUT/MIP-GCE) was characterized electrochemically and morphologically. As a result of analytical performance evaluation in standard solution, the linear response of the sensor was found in the concentration range between 1 and 10 pM with a detection limit of 0.269 pM. The recovery studies from plant extract and commercial herbal supplement samples emphasized accuracy and applicability. In imprinting factor studies figuring out quite good selectivity, molecules with a structure similar to RUT were selected as competitors to prove the affinity of the sensor against RUT. Consequently, the MA-Asp@RUT/MIP-GCE sensor offers a more sensitive and selective method thanks to its indirect analysis approach and also stands out with the diversity of its real sample application compared to other available studies.


Asunto(s)
Impresión Molecular , Polímeros Impresos Molecularmente , Extractos Vegetales , Polímeros/química , Rutina , Técnicas Electroquímicas/métodos , Impresión Molecular/métodos , Suplementos Dietéticos
14.
Food Res Int ; 179: 114036, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38342549

RESUMEN

Polysaccharides and polyphenols are biologically active components that coexist in Lycium barbarum fruit, and there may be interactions between them that affect the release of each other. In this study, polyphenols bound to L. barbarum polysaccharide (LBP) were characterized, and the stability of bound phenolics (BP) was assessed by gastrointestinal digestion and colon fermentation. The results showed that a total of 65 phytochemicals such as flavonoids, phenolic acids, and coumarins were identified by UPLC-MS/MS. Quantitative analysis revealed that the major phenolic constituents were rutin, p-coumaric acid, catechin, ferulic acid, protocatechuic acid, and gallic acid, and their contents were 58.72, 24.03, 14.24, 13.28, 10.39, and 6.7 mg GAE/100 g DW, respectively. The release of BP by gastric digestion and gastrointestinal digestion was 9.67 % and 19.39 %, respectively. Most polyphenols were greatly affected by gastric digestion, while rutin was released in small intestine. The BP were fully released (49.77 %) and metabolized by gut microorganisms, and a considerable number of intermediates and end-products were detected, such as phloroglucinol, phenylacetic acid, and phenyllactic acid. Microbiomics data emphasized the positive impact of LBP on gut bacteria of Bacteroides, Parabacteroides, and Clostridioides. These findings could deepen our understanding of the bioavailability and biological fate of BP and also provide reference data for nutrient release and utilization of L. barbarum as a whole.


Asunto(s)
Medicamentos Herbarios Chinos , Polifenoles , Espectrometría de Masas en Tándem , Polifenoles/análisis , Fermentación , Cromatografía Liquida , Fenoles/metabolismo , Digestión , Rutina/metabolismo , Colon/metabolismo
15.
Mol Biol Rep ; 51(1): 312, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38374412

RESUMEN

BACKGROUND: The present study is analysisof the seeds of buckwheat (Fagopyrum sp.),member of the Polygonaceae family for isolation of rutin and its anticancer property againstOsteosarcoma celllines (SAOS2). The selected plant is traditionally used for diabetes and cancer. It has several biological properties such as antibacterial, antioxidant and anti-aging. PURPOSE: Thirty-five buckwheat cultivars were obtained from Nepal Agriculture Genetic Resources Centre (NAGRC) Khumaltar, Kathmandu, Nepal, and Kumrek Sikkim. These plant varieties are scientifically evaluated their biological properties. METHODS: Rutin wasfractionated from buckwheat seeds using methanol fraction and analysed for quality by HPLC method. The rutin fraction of the cultivar NGRC03731 a tartary buck wheat and standard rutin was used against Osteosarcoma cell lines (SAOS2) and human gingival fibroblast cells (hGFs) for anticancer activity. The cell viability using rutin fraction and standard rutin treated with SAOS2 cells were assessed by MTT assay. For further research, the best doses (IC-50: 20 g/ml) were applied. By using AO/EtBr dual staining, the effects of Rutin fraction on SAOS2 cell death were analysed. The scratch wound healing assay was used to analyse cell migration. Real-time PCR was used to analyse the pro-/anti-apoptotic gene expression. RESULTS: The seeds with the highest rutin content, NGRC03731 seeds, had 433 mg/100 g of rutin.The rutin fraction treatment and standard rutin significantly reduced cell viability in the MTT assay, and osteosarcoma cells were observed on sensitive to the IC-50 dose at a concentration of 20 g/ml after 24 h.The SAOS2 cells exposed to rutin fraction at 20 g/ml and standard rutin at 10 g/ml exhibited significant morphological alterations, cell shrinkage and decreased cell density, which indicate apoptotic cells.Rutin-fraction treated cells stained with acridine orange/ethidium bromide (AO/EtBr) dual staining cells turned yellow, orange, and red which indicatesto measure apoptosis.The anti-migration potential of rutin fraction, results prevented the migration of SAOS2 cancer cells.Rutin-fraction significantly increased the expression of pro-apoptotic proteinsBad, using real-time PCR analysis (mRNA for Bcl-2 family proteins) resulted Bcl-2's expression is negatively regulated. CONCLUSION: Osteosarcoma (SAOS2) cell lines' proliferation, migration, and ability to proliferate were reduced markedly by rutin fraction and it also causes apoptosis of Osteosarcoma cell lines (SAOS2).


Asunto(s)
Fagopyrum , Osteosarcoma , Humanos , Rutina/farmacología , Fagopyrum/genética , Línea Celular , Proteínas Proto-Oncogénicas c-bcl-2 , Osteosarcoma/tratamiento farmacológico
16.
Toxicon ; 237: 107550, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38061671

RESUMEN

Malpighia emarginata has a high amount of vitamin C with pharmacological or food preservation potential. However, despite its wide use and application possibilities its toxicity in repeated doses and for a long time (6 months) has not yet been studied. In this context, this study aimed to evaluate the acute toxicity and repeated doses from fruits of this plant. The extract was produced with the pulp (EMe) of the lyophilized fruit and submitted to chromatographic and spectroscopic analysis (HPLC and ESI-IT-MSn). In the acute test, the EMe was administered orally and parenterally to rodents (mice and rats) for 14 days, at a dose of 2000 mg/kg. Subsequently, the repeated dose toxicity test was administered orally for 180 days at doses of 50, 300 or 1000 mg/kg. The HPLC assay revealed a high concentration of vitamin C (16.3%), and spectroscopic analyses pointed to the presence of five other polyphenolic compounds. In the acute test, the plant extract showed no apparent toxicity or lethality in rodents. The LD50 was estimated to be greater than 2000 mg/kg and falls into category 5 (low toxicity). In the repeated dose assay, there was no evidence of toxicity, and no differences were observed in water intake, food, weight development, or behavior of the animals in relation to the vehicle group (water). However, hematological and biochemical evaluations pointed out some nonconformities in the levels of cholesterol, leukocytes, and neutrophils of the male rats, but overall, these results did not reveal significant toxicity. Therefore, the Level of Unobserved Adverse Effects (NOAEL) was 1000 mg/kg. Together, the results suggest that the extract obtained from the fruits of M. emarginata does not present representative toxicity in rodents.


Asunto(s)
Frutas , Roedores , Ratas , Ratones , Animales , Frutas/toxicidad , Frutas/química , Ácido Ascórbico , Rutina , Extractos Vegetales , Agua , Pruebas de Toxicidad Aguda
17.
Naunyn Schmiedebergs Arch Pharmacol ; 397(2): 857-871, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37522914

RESUMEN

Phyllanthus emblica L. (syn. Emblica officinalis), popularly known as amla, Indian gooseberry, or the King of Rasyana, is a member of Phyllanthaceae family and is traditionally used in Ayurveda as an immunity booster. The present study aimed to investigate the synergistic interaction of Phyllanthus emblica (FPE) fruits and its selected phytocompounds with ampicillin against selected bacteria. Further, an in silico technique was used to find if major phytocompounds of FPE could bind to proteins responsible for antibiotic resistance in bacterial pathogens and enhance the bioactivity of ampicillin. FPE and all the selected phytocompounds were found to have synergistic antibacterial activity with ampicillin against tested bacteria in different combinations. However, ellagic acid and quercetin interactions with ampicillin resulted in maximum bioactivity enhancement of 32-128 folds and 16-277 folds, respectively. In silico analysis revealed strong ellagic acid, quercetin, and rutin binding with penicillin-binding protein (PBP-) 3, further supported by MD simulations. Ellagic acid and quercetin also fulfill Lipinski's rule, showing similar toxicity characteristics to ampicillin. FPE showed synergistic interaction with ampicillin, possibly due to the presence of phytocompounds such as gallic acid, ellagic acid, quercetin, and rutin. Molecular docking and MD simulations showed the strong interaction of ellagic acid and quercetin with PBP-3 protein. Therefore, these compounds can be explored as potential non-toxic drug candidates to combat bacterial antimicrobial resistance.


Asunto(s)
Phyllanthus emblica , Phyllanthus emblica/química , Frutas/química , Quercetina , Simulación del Acoplamiento Molecular , Ácido Elágico/farmacología , Extractos Vegetales/química , Antibacterianos/farmacología , Ampicilina/farmacología , Ampicilina/análisis , Rutina
18.
Int J Biol Macromol ; 257(Pt 2): 127504, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37858650

RESUMEN

Tartary buckwheat protein-rutin/quercetin covalent complex was synthesized in alkaline oxygen-containing environment, and its binding sites, conformational changes and functional properties were evaluated by multispectral technique and proteomics. The determination of total sulfhydryl and free amino groups showed that rutin/quercetin can form a covalent complex with BPI and could significantly reduce the group content. Ultraviolet-visible spectrum analysis showed that protein could form new characteristic peaks after binding with rutin/quercetin. Circular dichroism spectrum analysis showed that rutin and quercetin caused similar changes in the secondary structure of proteins, both promoting ß-sheet to α-helix, ß-ture and random coil transformation. The fluorescence spectrometry results showed that the combination of phenols can cause the fluorescence quenching, and the combination of rutin was stronger than the quercetin. Proteomics showed that there were multiple covalent binding sites between phenols and protein. Rutin had a high affinity for arginine, and quercetin and cysteine had high affinity. Meanwhile, the combination of rutin/quercetin and protein had reduced the surface hydrophobic ability of the protein, and improved the foaming, stability and antioxidant properties of the protein. This study expounded the mechanism of the combination of BPI and rutin/quercetin, and analysed the differences of the combination of protein and phenols in different structures. The findings can provide a theoretical basis for the development of complexes in the area of food.


Asunto(s)
Fagopyrum , Quercetina , Quercetina/química , Fenoles , Fenol , Fagopyrum/química , Rutina/química , Sitios de Unión
19.
J Steroid Biochem Mol Biol ; 238: 106450, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38143010

RESUMEN

The potential inhibitory effects of flavonoids on gonadal steroid biosynthesis have gained attention due to their widespread presence in natural plant sources. Specifically, our study focused on evaluating the inhibitory efficacy of these compounds on human 3ß-hydroxysteroid dehydrogenase 2 (h3ß-HSD2) and rat homolog r3ß-HSD1, enzymes responsible for the conversion of pregnenolone to progesterone. Through our investigations, we observed that the potency of flavonoids was silymarin (IC50, 1.31 µM) > luteolin (4.63 µM) > tectorigenin > (5.86 µM), and rutin (44.12 µM) in inhibiting human KGN cell microsomal h3ß-HSD2. Similarly, the potency of flavonoids was silymarin (9.50 µM) > luteolin (11.49 µM) > tectorigenin (14.06 µM), and rutin (145.71 µM) in inhibiting rat testicular r3ß-HSD1. Silymarin, luteolin, and tectorigenin acted as mixed inhibitors of both human and rat 3ß-HSDs. Luteolin and tectorigenin were able to penetrate human KGN cells to inhibit progesterone secretion. Furthermore, docking analysis and structure-activity relationship analysis highlighted the importance of hydrogen bond formation for the inhibitory efficacy of these compounds against h3ß-HSD2 and r3ß-HSD1. Overall, this study demonstrates that silymarin exhibits the most potent inhibition of human and rat gonadal 3ß-HSDs, and significant SAR differences exist among the tested compounds.


Asunto(s)
Flavonoides , Silimarina , Humanos , Ratas , Animales , Flavonoides/farmacología , 3-Hidroxiesteroide Deshidrogenasas/metabolismo , Progesterona , Luteolina/farmacología , Relación Estructura-Actividad , Rutina/farmacología , 11-beta-Hidroxiesteroide Deshidrogenasas
20.
J Ethnopharmacol ; 322: 117563, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38104876

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Tetrastigma hemsleyanum is an endemic Chinese herb with a wide range of pharmacological activities, including anti-inflammatory, antiviral, antioxidant, antitumor, and immunomodulatory activities. However, the effect and mechanisms of the anti-inflammatory activity of T. hemsleyanum root extract against dextran sodium sulfate (DSS)-induced ulcerative colitis (UC) have not yet been fully investigated. AIM OF THE STUDY: This study aimed to explore the therapeutic effect and molecular mechanisms of T. hemsleyanum root extract in DSS-induced UC mice and knockdown cells. MATERIALS AND METHODS: T. hemsleyanum root extract was obtained and analyzed by high-performance liquid chromatography (HPLC). The therapeutic effects of T. hemsleyanum root extract on DSS-induced UC mice were evaluated by the disease activity index (DAI) score, colon length, serum inflammatory cytokines and oxidant/antioxidant levels, and histopathological features of the ileum and colon. Genome-wide gene expression profiles of ileal and colonic tissues were collected by transcriptomics, and signaling pathways were analyzed by the KEGG database. UC-related pathways were uploaded to the STRING database, then the protein-protein interactions (PPIs) were determined by Cytoscape, and the enriched genes were evaluated by real-time quantitative PCR (qPCR). The protein-ligand complexes were docked by AutoDock, and the genes were knocked down in Caco-2 cells by shRNA. The non-targeted metabolomic profiling of ileal contents was analyzed by ultra-high-performance liquid chromatography (UHPLC), and gut microflora were sequenced by an Illumina MiSeq System. RESULTS: Ten components that alleviated UC symptoms in mice by decreasing the DAI and serum inflammatory cytokines and oxidant levels, promoting intestinal development, and increasing serum antioxidant levels were identified in T. hemsleyanum root extract. T. hemsleyanum root extract activated the B cell receptor signaling pathway in the colon tissue of UC mice, in which two components, rutin and astragaline, bound to the spleen tyrosine kinase (SYK) protein but also restored gut microflora diversity and increased the proportion of probiotics. Furthermore, metabolites of T. hemsleyanum root extract were involved in vitamin metabolism, fatty acid metabolism, and ferroptosis. CONCLUSIONS: The rutin and astragaline components of T. hemsleyanum root extract, by binding to SYK protein, activated the B cell receptor signaling pathway and restored gut microflora diversity to alleviate UC symptoms in mice.


Asunto(s)
Colitis Ulcerosa , Colitis , Quinasa Syk , Animales , Ratones , Humanos , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Células CACO-2 , Citocinas/genética , Inflamación , Transducción de Señal , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Oxidantes , Rutina , Receptores de Antígenos de Linfocitos B , Sulfato de Dextran/toxicidad , Modelos Animales de Enfermedad , Colon , Ratones Endogámicos C57BL , Colitis/inducido químicamente , Colitis/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA